Abstract
Algae bloom event, an extreme ecological imbalance that the water environment experiences, changes the phosphorus (P) cycle in the aquatic environment, which makes the lake maintain a long-term eutrophication and frequent algae bloom state. This study compared P form characteristics and bacteria community structures in the aquatic environment of the cyanobacteria area and non-cyanobacteria area of Taihu Lake, aiming to clear the new P cycle pattern disturbed by algae bloom and decomposition processes. Compared with P forms in mediums of the middle of the lake and the east of the lake, there were higher concentration levels of total particulate P (TPP) in water, organic P (OP) in suspended particles, iron bound P (FeP) in sediments and phosphate (PO43−) in the pore water of Meiliang Bay, the cyanobacteria area. OP form was the dominant P fraction in suspended particles that occupied 69% in particulate total P, but OP proportion in sediments decreased to 26% of sediment total P, which indicated the strong occurrence of OP mineralization in sediments. The higher concentration and proportion of FeP in sediments of Meiliang Bay suggested the intensified effects of algae bloom and decomposition on sediment FeP accumulation. In Meiliang Bay, the positive correlation between Fe2+ and PO43− in pore water and the higher diffusion fluxes of Fe2+, PO43− from pore water to overlying water (0.45, 0.65 mg/m2·d) than that in the other lake areas also suggested the intensified effects of algae bloom and decomposition on FeP reductive dissolution in sediments accompanying sediment P remobilization. Moreover, there were higher concentrations of labile sulfide and high relative abundances of iron reducing bacteria (FRBs), sulfate reducing bacteria (SRBs) in sediments of Meiliang Bay. Results suggested that algae bloom event changed the natural P cycle in aquatic environment through intensifying the pathways of sediment OP mineralization, FeP accumulation and FeP reductive dissolution, which were mainly driven by the coupled factors of anoxic sediment condition, SRBs and FRBs activities. In addition, PO43− diffusion from pore water to overlying water in the east of the lake may be prevented for its much higher Fe/P ratio (8.06) and Fe2+ concentrations in pore water, which may form a P-adsorbing barrier of iron oxides in the interface between pore water and overlying water. This study enhances the understanding of the vicious P cycle pattern in the aquatic environment driven by algae bloom and decomposition, which should be considered when conducting eutrophication prevention and control measures on lakes.
Funder
Natural Science Foundation of Jiangsu province in China
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献