Co-Effects of Nitrogen Fertilizer and Straw-Decomposing Microbial Inoculant on Decomposition and Transformation of Field Composted Wheat Straw

Author:

Shaghaleh Hiba12ORCID,Zhu Yuanpeng13,Shi Xinyi1,Alhaj Hamoud Yousef4ORCID,Ma Chao1ORCID

Affiliation:

1. Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Research Centre of Phosphorus Efficient Utilization and Water Environment Protection along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

2. College of Environment, Hohai University, Nanjing 210098, China

3. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China

4. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

Although straw is an abundant and useful agricultural byproduct, it, however, exhibits hardly any decomposition and transformation. Despite the successful application of chemical and biological substrates for accelerating straw decomposition, the co-effects and mechanisms involved are still unknown. Herein, we performed a 120 day field trial to examine the co-effects of a nitrogen fertilizer (N) and a straw-decomposing microbial inoculant (SDMI) on the straw mass, nutrient release, and the straw chemical structure of composted wheat straw in the Chaohu Lake area, East China. For this purpose, four treatments were selected with straw: S (straw only), NS (N + straw), MS (SDMI + straw), and NMS (N + SDMI + straw). Our results indicated that NMS caused a higher straw decomposition rate than S, NS, and MS (p < 0.05) after 120 days of composting. The N, P, and K discharge rates in treating with NMS were higher than other the treatments at 120 days. The A/OA ratios of the straw residues were gradually increased during the composting, but the treatment of NMS and MS was lower than the CK at the latter stage. The RDA showed that the decomposition rate, nutrient release, and the chemical structure change in the straw were cumulative, while respiration was strongly correlated with lignin peroxidase, manganese peroxidase, and neutral xylanase. In conclusion, nitrogen fertilizer or straw-decomposing microbial inoculant application can improve the decomposition rate and nutrient release with oxidase activity intensified. However, the co-application of nitrogen fertilizer and a straw-decomposing microbial inoculant promoted straw decomposition and enzyme activity better than a single application and showed a lower decomposition degree, which means more potential for further decomposing after 120 days.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3