Affiliation:
1. Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
Abstract
C-terminally encoded peptides (CEPs) are plant developmental signals that regulate growth and adaptive responses to nitrogen stress conditions. These small signal peptides are common to all vascular plants, and intriguingly have been characterized in some plant parasitic nematodes. Here, we sought to discover the breadth of root-knot nematode (RKN)-encoded CEP-like peptides and define the potential roles of these signals in the plant–nematode interaction, focusing on peptide activity altering plant root phenotypes and nitrogen uptake and assimilation. A comprehensive bioinformatic screen identified 61 CEP-like sequences encoded within the genomes of six root-knot nematode (RKN; Meloidogyne spp.) species. Exogenous application of an RKN CEP-like peptide altered A. thaliana and M. truncatula root phenotypes including reduced lateral root number in M. truncatula and inhibited primary root length in A. thaliana. To define the role of RKN CEP-like peptides, we applied exogenous RKN CEP and demonstrated increases in plant nitrogen uptake through the upregulation of nitrate transporter gene expression in roots and increased 15N/14N in nematode-formed root galls. Further, we also identified enhanced nematode metabolic processes following CEP application. These results support a model of parasite-induced changes in host metabolism and inform endogenous pathways to regulate plant nitrogen assimilation.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献