A Comprehensive Study of Techniques to Optimize the Extraction of Lipids from the Autotrophic Strain of the Microalgae Chlorella vulgaris

Author:

Foerster Ian1,Seames Wayne1,Oleksik Jasmine2,Kubatova Alena3ORCID,Ross Andrew4

Affiliation:

1. Chemical Engineering Department, University of North Dakota, 243 Centennial Drive Stop 7101, Grand Forks, ND 58202, USA

2. Energy & Environmental Research Center, University of North Dakota, 15 N. 23rd St., Grand Forks, ND 58202, USA

3. Chemistry Department, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA

4. School of Chemical and Process Engineering, University of Leeds, 209 Clarendon Road, Leeds LS2 9JT, UK

Abstract

Microalgae represent a promising source of triglycerides and free fatty acids, synthesized in the form of lipids, for use in renewable fuels and chemicals. One challenge is the ability to efficiently recover the lipids from within the microalgae cell. Although various techniques have been studied individually, a comprehensive study of extraction techniques using consistent experimental and analytical methodology is missing. This study aims to provide this unifying comparison using the common microalgae strain Chlorella vulgaris. The factors that were surveyed and then optimized to achieve maximum extraction efficiency included the solvent type; mechanical pre-treatment using a ball mill at a variety of grinding speeds; microalgae-to-solvent ratio; extraction facilitated by microwave; extraction facilitated by sonication; extraction facilitated using increased temperature; and extraction facilitated by in situ transesterification to convert the lipids into esters prior to extraction. The optimum conditions determined during these studies were utilizing methanol as the solvent, with ball mill pretreatment at a grinding speed of 500 rpm, and a 1:9 microalgae to solvent ratio. When used in combination with microwave-assisted extraction at a temperature of 140 °C, approximately 24 wt% of the initial lipids were recovered. Recoveries of over 70 wt% were obtained without a microwave at extraction temperatures of over 200 °C.

Funder

USA National Science Foundation IRES Program

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3