Induction of Triticale (×Triticosecale Wittmack) In Vitro Androgenesis in Anther Cultures of F1 Hybrid Combinations, Varieties and Homogeneity Testing of Offspring Generation

Author:

Kruppa József1,Kanbar Osama Zuhair2ORCID,Tóth-Lencsés Kitti Andrea3,Kiss Erzsébet3,Bóna Lajos2,Lantos Csaba2ORCID,Pauk János2

Affiliation:

1. Kruppa-Seed Ltd., H-4600 Kisvárda, Hungary

2. Cereal Research Non-Profit Ltd., H-6726 Szeged, Hungary

3. Molecular Genetics and Breeding Group, Department of Genetics and Genomics, Institute of Genetics and Biotechnology (GBI), Szent István Campus, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary

Abstract

In cereal breeding, in vitro androgenesis methods are frequently applied to achieve doubled haploid (DH) plants. The aim of this study was to determine the effects of genotype (three registered varieties and eight F1 crossing combinations) and induction medium (W14mf and P4mf) on anther cultures (ACs) of triticale (×Triticosecale Wittmack). Androgenesis was induced in the treatment of each tested genotype, and the genotype significantly influenced the efficiency of AC, including in embryo-like structures (ELSs), albinos, green plantlets, and transplanted plantlets. The utilized medium also had a significant effect on the number of ELSs, albinos, and transplanted plantlets. Both media were suitable for AC in triticale DH plant production. The efficiency of AC was higher when using the P4mf medium (103.7 ELS/100 anthers, 19.7 green plantlets/100 anthers) than when using the W14mf medium (90.0 ELS/100 anthers, 17.0 green plantlets/100 anthers). However, the green plantlet regeneration efficiency of microspore-derived structures was 18.0% when using the W14mf medium, while this value was 15.9% in the case of ELSs induced with the P4mf medium. After nursery seed evaluation and propagation (DH1), the genetic homogeneity of the offspring generation (DH2) was tested using a molecular genetic method. Most of the tested DH lines showed homogeneity and were progressed into a breeding program after agronomic selection. Some DH lines showed inhomogeneity, which could be explained by the outcross inclination of triticale. We would like to call breeders’ attention to the outcross character of triticale and emphasize the vigilant propagation and maintenance of the triticale DH lines in breeding programs. Due to the outcross nature of triticale, even in self-pollinated genotypes, breeders should focus on careful maintenance, along with isolation in the case of line propagations, in triticale breeding programs.

Funder

Ministry for Innovation and Technology

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Haploids in flowering plants: Origins and exploitation;Dunwell;Plant Biotechnol. J.,2010

2. Cytological studies on the androgenesis of Triticale;Sun;Acta Bot. Sin.,1973

3. The induction of pollen plantlets of Triticale and Capsicum annum from anther culture;Wang;Scientia Sin.,1973

4. In vitro androgenesis of triticale in isolated microspore culture;Pauk;Plant Cell Tissue Organ. Cult.,2000

5. Effects of osmolality, cytokinin and organic acid on pollen callus formation in triticale anthers;Chien;Can. J. Bot.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3