Various Organ Damages in Rats with Fetal Growth Restriction and Their Slight Attenuation by Bifidobacterium breve Supplementation

Author:

Tsuji Masahiro1ORCID,Tanaka Nao1,Koike Hitomi1,Sato Yoshiaki2ORCID,Shimoyama Yoshie3,Itoh Ayaka1

Affiliation:

1. Department of Food and Nutrition, Kyoto Women’s University, Kyoto 605-8501, Japan

2. Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8560, Japan

3. Department of Pathology, Nagoya University Hospital, Nagoya 466-8560, Japan

Abstract

Children with fetal growth restriction (FGR) and its resultant low birthweight (LBW) are at a higher risk of developing various health problems later in life, including renal diseases, metabolic syndrome, and sarcopenia. The mechanism through which LBW caused by intrauterine hypoperfusion leads to these health problems has not been properly investigated. Oral supplementation with probiotics is expected to reduce these risks in children. In the present study, rat pups born with FGR-LBW after mild intrauterine hypoperfusion were supplemented with either Bifidobacterium breve (B. breve) or a vehicle from postnatal day 1 (P1) to P21. Splanchnic organs and skeletal muscles were evaluated at six weeks of age. Compared with the sham group, the LBW-vehicle group presented significant changes as follows: overgrowth from infancy to childhood; lighter weight of the liver, kidneys, and gastrocnemius and plantaris muscles; reduced height of villi in the ileum; and increased depth of crypts in the jejunum. Some of these changes were milder in the LBW-B.breve group. In conclusion, this rat model could be useful for investigating the mechanisms of how FGR-LBW leads to future health problems and for developing interventions for these problems. Supplementation with B. breve in early life may modestly attenuate these problems.

Funder

Intramural Research Fund of Kyoto Women’s University

JSPS KAKENHI

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3