Patterns of Biodynamic Milk Fatty Acid Composition Explained by A Climate-Geographical Approach

Author:

Baars Ton,Wohlers Jenifer,Rohrer Carsten,Lorkowski StefanORCID,Jahreis Gerhard

Abstract

Background: Biodynamic dairy production is based on a land-related animal production without the additional input of N-fertilizers. The concentrate level per cow is low. This affects the yield level of animals and product quality outcomes. Methods: We examined the milk fatty acid (FA) composition of European biodynamic farms in relation to the ecological region of production and the farm’s climate conditions. Climate data were derived from existing maps describing ecological vegetation zones within Europe. Additionally, biodynamic shop milk was compared to conventional shop milk, based on a regional comparison. Results: The largest differences in the FA composition were between biodynamic summer and winter milk. We found increased proportions of conjugated linoleic acid (CLA), alpha-linolenic acid (ALA-n3), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA) in the summer milk. A principal component analysis expressed the structure that was present in the biodynamic farm milk samples, based on clusters of a single FA within four components. The components could be correlated with the season of production, the amount of precipitation, the elevation of the farm above sea level, and the length of the grazing season. Biodynamic shop milk in the summer had a lower n6/n3 PUFA ratio compared to the conventional shop milk in all regions of production. Mean values were 1.37 and 1.89, respectively. Conclusions: The differentiation of biodynamic milk FA composition is consistent with the existing knowledge about the effects of fresh grass, fodder, and ratio composition on the milk’s FA composition. Based on the n6/n3 PUFA ratio, the average biodynamic dairy cow had a high intake (>82%) of fresh grass and conserved roughage (hay and grass silage), especially in the summer.

Funder

Damus-Donata e.V in Mannheim, Germany

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3