Feature Selection for Colon Cancer Detection Using K-Means Clustering and Modified Harmony Search Algorithm

Author:

Bae Jin HeeORCID,Kim MinwooORCID,Lim J.S.,Geem Zong WooORCID

Abstract

This paper proposes a feature selection method that is effective in distinguishing colorectal cancer patients from normal individuals using K-means clustering and the modified harmony search algorithm. As the genetic cause of colorectal cancer originates from mutations in genes, it is important to classify the presence or absence of colorectal cancer through gene information. The proposed methodology consists of four steps. First, the original data are Z-normalized by data preprocessing. Candidate genes are then selected using the Fisher score. Next, one representative gene is selected from each cluster after candidate genes are clustered using K-means clustering. Finally, feature selection is carried out using the modified harmony search algorithm. The gene combination created by feature selection is then applied to the classification model and verified using 5-fold cross-validation. The proposed model obtained a classification accuracy of up to 94.36%. Furthermore, on comparing the proposed method with other methods, we prove that the proposed method performs well in classifying colorectal cancer. Moreover, we believe that the proposed model can be applied not only to colorectal cancer but also to other gene-related diseases.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colon Cancer Detection using Deep Learning Algorithm;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

2. An Early Stage Determination of Colon Cancer Through Deep Neural Network;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

3. A Review on Analyzing and Predicting the State of Cancer Disease using Machine Learning Algorithms;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

4. T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to Cancer Classification;Communications in Computer and Information Science;2023-11-26

5. Predicting Severe Haematological Toxicity in Gastrointestinal Cancer Patients Undergoing 5-FU-Based Chemotherapy: A Bayesian Network Approach;Cancers;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3