Improving the Accuracy of Dam Inflow Predictions Using a Long Short-Term Memory Network Coupled with Wavelet Transform and Predictor Selection

Author:

Tran Trung Duc,Tran Vinh Ngoc,Kim Jongho

Abstract

Accurate and reliable dam inflow prediction models are essential for effective reservoir operation and management. This study presents a data-driven model that couples a long short-term memory (LSTM) network with robust input predictor selection, input reconstruction by wavelet transformation, and efficient hyper-parameter optimization by K-fold cross-validation and the random search. First, a robust analysis using a “correlation threshold” for partial autocorrelation and cross-correlation functions is proposed, and only variables greater than this threshold are selected as input predictors and their time lags. This analysis indicates that a model trained on a threshold of 0.4 returns the highest Nash–Sutcliffe efficiency value; as a result, six principal inputs are selected. Second, using additional subseries reconstructed by the wavelet transform improves predictability, particularly for flow peak. The peak error values of LSTM with the transform are approximately one-half to one-quarter the size of those without the transform. Third, for a K of 5 as determined by the Silhouette coefficients and the distortion score, the wavelet-transformed LSTMs require a larger number of hidden units, epochs, dropout, and batch size. This complex configuration is needed because the amount of inputs used by these LSTMs is five times greater than that of other models. Last, an evaluation of accuracy performance reveals that the model proposed in this study, called SWLSTM, provides superior predictions of the daily inflow of the Hwacheon dam in South Korea compared with three other LSTM models by 84%, 78%, and 65%. These results strengthen the potential of data-driven models for efficient and effective reservoir inflow predictions, and should help policy-makers and operators better manage their reservoir operations.

Funder

KOREA HYDRO & NUCLEAR POWER CO., LTD

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3