Abstract
Given a commutative ring R with identity 1≠0, let the set Z(R) denote the set of zero-divisors and let Z*(R)=Z(R)∖{0} be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by Γ(R), is a simple graph whose vertex set is Z*(R) and each pair of vertices in Z*(R) are adjacent when their product is 0. In this article, we find the structure and Laplacian spectrum of the zero-divisor graphs Γ(Zn) for n=pN1qN2, where p<q are primes and N1,N2 are positive integers.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献