A Multi-Criteria Computer Package-Based Energy Management System for a Grid-Connected AC Nanogrid

Author:

Roncero-Clemente Carlos,Roanes-Lozano EugenioORCID,Barrero-González FermínORCID

Abstract

The electric system scenario has been changing during the last years moving to a distributed system with a high penetration of renewables. Due to the unpredictable behavior of some renewables sources, the development of the energy management system is considered crucial to guarantee the reliability and stability of the system. At the same time, increasing the lifespan of the energy storage system is one of the most important points to take into account. In this sense, a software package implemented in the computer algebra system Maple is proposed in this work to control a grid-connected nanogrid with hybrid energy storage system (composed by batteries and supercapacitors). The energy management system considers several rules as the state of charge of the energy storage system, the photovoltaic power generation and the load profile, the nanogrid power trend and the energy prices. The improved performance of the nanogrid is proven by simulations in MATLAB/Simulink.

Funder

Junta de Extremadura

Government of Spain

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3