Abstract
The 5th generation (5G) wireless networks propose to address a variety of usage scenarios, such as enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communications (URLLC). Due to the exponential increase in the user equipment (UE) devices of wireless communication technologies, 5G and beyond networks (B5G) expect to support far higher user density and far lower latency than currently deployed cellular technologies, like long-term evolution-Advanced (LTE-A). However, one of the critical challenges for B5G is finding a clever way for various channel access mechanisms to maintain dense UE deployments. Random access channel (RACH) is a mandatory procedure for the UEs to connect with the evolved node B (eNB). The performance of the RACH directly affects the performance of the entire network. Currently, RACH uses a uniform distribution-based (UD) random access to prevent a possible network collision among multiple UEs attempting to access channel resources. However, in a UD-based channel access, every UE has an equal chance to choose a similar contention preamble close to the expected value, which causes an increase in the collision among the UEs. Therefore, in this paper, we propose a Poisson process-based RACH (2PRACH) alternative to a UD-based RACH. A Poisson process-based distribution, such as exponential distribution, disperses the random preambles between two bounds in a Poisson point method, where random variables occur continuously and independently with a constant parametric rate. In this way, our proposed 2PRACH approach distributes the UEs in a probability distribution of a parametric collection. Simulation results show that the shift of RACH from UD-based channel access to a Poisson process-based distribution enhances the reliability and lowers the network’s latency.
Funder
Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献