Abstract
The detection of redundant or irrelevant variables (attributes) in datasets becomes essential in different frameworks, such as in Formal Concept Analysis (FCA). However, removing such variables can have some impact on the concept lattice, which is closely related to the algebraic structure of the obtained quotient set and their classes. This paper studies the algebraic structure of the induced equivalence classes and characterizes those classes that are convex sublattices of the original concept lattice. Particular attention is given to the reductions removing FCA’s unnecessary attributes. The obtained results will be useful to other complementary reduction techniques, such as the recently introduced procedure based on local congruences.
Funder
Agencia Estatal de Investigación
European Cooperation in Science and Technology
Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献