A Numerical Comparison of the Sensitivity of the Geometric Mean Method, Eigenvalue Method, and Best–Worst Method

Author:

Mazurek JiříORCID,Perzina RadomírORCID,Ramík JaroslavORCID,Bartl DavidORCID

Abstract

In this paper, we compare three methods for deriving a priority vector in the theoretical framework of pairwise comparisons—the Geometric Mean Method (GMM), Eigenvalue Method (EVM) and Best–Worst Method (BWM)—with respect to two features: sensitivity and order violation. As the research method, we apply One-Factor-At-a-Time (OFAT) sensitivity analysis via Monte Carlo simulations; the number of compared objects ranges from 3 to 8, and the comparison scale coincides with Saaty’s fundamental scale from 1 to 9 with reciprocals. Our findings suggest that the BWM is, on average, significantly more sensitive statistically (and thus less robust) and more susceptible to order violation than the GMM and EVM for every examined matrix (vector) size, even after adjustment for the different numbers of pairwise comparisons required by each method. On the other hand, differences in sensitivity and order violation between the GMM and EMM were found to be mostly statistically insignificant.

Funder

Grantová Agentura České Republiky

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Note—A Preference Ranking Organisation Method

2. Multiple Criteria Decision Analysis: State of the Art Surveys;Figueira,2005

3. A new method for scoring additive multi-attribute value models using pairwise rankings of alternatives

4. Multiple Criteria Decision Making: From Early History to the 21st Century;Koksalan,2011

5. Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3