Derivation and Application of the Subjective–Objective Probability Relationship from Entropy: The Entropy Decision Risk Model (EDRM)

Author:

Monroe ThomasORCID,Beruvides Mario,Tercero-Gómez Víctor

Abstract

The uncertainty, or entropy, of an atom of an ideal gas being in a certain energy state mirrors the way people perceive uncertainty in the making of decisions, uncertainty that is related to unmeasurable subjective probability. It is well established that subjects evaluate risk decisions involving uncertain choices using subjective probability rather than objective, which is usually calculated using empirically derived decision weights, such as those described in Prospect Theory; however, an exact objective–subjective probability relationship can be derived from statistical mechanics and information theory using Kullback–Leibler entropy divergence. The resulting Entropy Decision Risk Model (EDRM) is based upon proximity or nearness to a state and is predictive rather than descriptive. A priori EDRM, without factors or corrections, accurately aligns with the results of prior decision making under uncertainty (DMUU) studies, including Prospect Theory and others. This research is a first step towards the broader effort of quantifying financial, programmatic, and safety risk decisions in fungible terms, which applies proximity (i.e., subjective probability) with power utility to evaluate choice preference of gains, losses, and mixtures of the two in terms of a new parameter referred to as Prospect. To facilitate evaluation of the EDRM against prior studies reported in terms of the percentage of subjects selecting a choice, the Percentage Evaluation Model (PEM) is introduced to convert choice value results into subject response percentages, thereby permitting direct comparison of a utility model for the first time.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference73 articles.

1. Mathematical Foundations of Quantum Mechanics;von Neumann,1955

2. Thinking, Fast and Slow;Kahneman,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3