Degradation Kinetics and Disinfection By-Product Formation of Iopromide during UV/Chlorination and UV/Persulfate Oxidation

Author:

Hu Chenyan,Wang Qiangbing,Lin Yi-LiORCID,Zhu Yeye,Xiong Cun,Huang Dandan,Xu Ling

Abstract

As the detection of micropollutants in various water resources is commonly reported, developing an efficient technology to remove them to maintain water safety has become a major focus in recent years. The degradation kinetics of iopromide, one of a group of iodinated X-ray contrast media (ICM), using advanced oxidation processes of ultraviolet/chlorination (UV/Cl2) and UV/persulfate (UV/PS) oxidation were investigated in this research. The results show that iopromide degradation fitted pseudo-first-order kinetics, and the rate constants were calculated as 2.20 (± 0.01) × 10−1 min−1 and 6.08 (± 0.10) × 10−2 min−1 in UV/Cl2 and UV/PS, respectively. In the two systems, the degradation rates were positively correlated with the initial concentrations of HOCl and PS, respectively. In the UV/Cl2 system, the degradation rate of iopromide reached a maximum at pH 7, while in the UV/PS system, pH had only a slight effect on the degradation rate. Chloride in water had a negligible effect on iopromide degradation, whereas bromide inhibited iopromide degradation in the UV/Cl2 system. The contributions of UV irradiation, •OH, and RCS to iopromide degradation during UV/Cl2 treatment were calculated as 20.8%, 54.1%, and 25.1%, respectively. One carbonated and three nitrogenated disinfection by-products (C-DBP (chloroform) and N-DBPs (dichloroacetonitrile, trichloronitromethane, and trichloroacetone)) were detected at relatively high levels, along with three emerging iodinated DBPs (dichloroiodomethane, monochlorodiiodomethane, and triiodomethane). More C- and N-DBPs were generated in the UV/Cl2 and UV/PS systems than in UV irradiation, while considerably higher I-DBPs were generated in UV irradiation than in the other two systems. Thus, it is essential to pay attention to DBP formation when UV/Cl2 or UV/PS is used to treat iopromide in water. In order to better control the generation of carcinogenic and toxic I-DBPs, Cl2 or PS combined with UV should be adopted for iopromide degradation, instead of UV alone, for providing safe drinking water to the public.

Funder

National Natural Science Foundation of China

Shanghai Committee of Science and Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3