Mobility Prediction-Based Optimisation and Encryption of Passenger Traffic-Flows Using Machine Learning

Author:

Asad Syed MuhammadORCID,Ahmad JawadORCID,Hussain SajjadORCID,Zoha Ahmed,Abbasi Qammer HussainORCID,Imran Muhammad AliORCID

Abstract

Information and Communication Technology (ICT) enabled optimisation of train’s passenger traffic flows is a key consideration of transportation under Smart City planning (SCP). Traditional mobility prediction based optimisation and encryption approaches are reactive in nature; however, Artificial Intelligence (AI) driven proactive solutions are required for near real-time optimisation. Leveraging the historical passenger data recorded via Radio Frequency Identification (RFID) sensors installed at the train stations, mobility prediction models can be developed to support and improve the railway operational performance vis-a-vis 5G and beyond. In this paper we have analysed the passenger traffic flows based on an Access, Egress and Interchange (AEI) framework to support train infrastructure against congestion, accidents, overloading carriages and maintenance. This paper predominantly focuses on developing passenger flow predictions using Machine Learning (ML) along with a novel encryption model that is capable of handling the heavy passenger traffic flow in real-time. We have compared and reported the performance of various ML driven flow prediction models using real-world passenger flow data obtained from London Underground and Overground (LUO). Extensive spatio-temporal simulations leveraging realistic mobility prediction models show that an AEI framework can achieve 91.17% prediction accuracy along with secure and light-weight encryption capabilities. Security parameters such as correlation coefficient (<0.01), entropy (>7.70), number of pixel change rate (>99%), unified average change intensity (>33), contrast (>10), homogeneity (<0.3) and energy (<0.01) prove the efficacy of the proposed encryption scheme.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Swarm Intelligence Based Feature Selection and Machine Learning Methods for Future Railway Traffic Prediction;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Urban Mobility Pattern Detection: Development of a Classification Algorithm Based on Machine Learning and GPS;Sensors;2024-06-15

3. Maintenance and Production Optimization using artificial intelligence (AI) Tools: A Bibliometric Analysis and Review;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

4. AViTRoN: Advanced Vision Track Routing and Navigation for Autonomous Charging of Electric Vehicles;IEEE Access;2024

5. Traffic Control, Congestion Management and Smart Parking through VANET, ML, and IoT: A Review;2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM);2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3