Quantitative Evaluation of the “Non-Enclosed” Microseismic Array: A Case Study in a Deeply Buried Twin-Tube Tunnel

Author:

Zhang HangORCID,Ma ChunchiORCID,Li Tianbin

Abstract

The high-stress hazards of underground engineering have stimulated the exploration of microseismic monitoring and early warning methods. To achieve a good monitoring effect, the monitoring object is usually enclosed by a microseismic array (sensor array) (e.g., slope engineering, etc.). However, some characteristics of a buried tunnel, including “linear”, “deep-buried”, and “long”, make it difficult to deploy a reasonable microseismic array, which leads to the microseismic array being non-enclosed for the monitoring object. Application of the non-enclosed microseismic array yields decreases the accuracy of the source location. To solve the problem wisely, this paper deals with the feasibility of non-enclosed microseismic arrays (axial-extended, lateral-extended, and twin-tube arrays) by introducing a quantitative method. To this end, an optimized microseismic array with the best source location accuracy for a twin-tube expressway tunnel is proposed. The obtained results reveal that the non-enclosed microseismic arrays, which are unavoidable in expressway tunnel engineering, do not introduce errors but reduce the ability to resist them. Further, the twin-tube array achieves a better source location accuracy than the axial and lateral-extended arrays. In the application of the source location based on the particle swarm optimization (PSO) algorithm to the twin-tube array, microseismic events, which cluster in the rockburst section, are wholly gathered, and the maximum error is reduced by about 30–50 m, indicating its greater feasibility with respect to the single-tube array.

Funder

National Natural Science Foundation of China

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3