TD3-Based EMS Using Action Mask and Considering Battery Aging for Hybrid Electric Dump Trucks

Author:

Mo Jinchuan1,Yang Rong1ORCID,Zhang Song2,Zhou Yongjian1,Huang Wei1

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

2. Guangxi Yuchai Machinery Company Limited, Yulin 537000, China

Abstract

The hybrid electric dump truck is equipped with multiple power sources, and each powertrain component is controlled by an energy management strategy (EMS) to split the demanded power. This study proposes an EMS based on deep reinforcement learning (DRL) algorithm to extend the battery life and reduced total usage cost for the vehicle, namely the twin delayed deep deterministic policy gradient (TD3) based EMS. Firstly, the vehicle model is constructed and the optimization objective function, including battery aging cost and fuel consumption cost, is designed. Secondly, the TD3-based EMS is used for continuous action control of ICE power based on vehicle state, and the action mask is applied to filter out invalid actions. Thirdly, the simulations of the EMSs are trained under the CHTC-D driving cycle and C-WTVC driving cycle. The results show that the action mask improves the convergence efficiency of the strategies, and the proposed TD3-based EMS outperforms the deep deterministic policy gradient (DDPG) based EMS. Meanwhile, the battery life is extended by 36.17% under CHTC-D and 35.49% under C-WTVC, and the total usage cost is reduced by 4.30% and 2.49% when the EMS considers battery aging. In summary, the proposed TD3-based EMS can extend the battery life and reduce usage cost, and provides a method to solve the optimization problem for the EMS of hybrid power systems.

Funder

Guangxi Science and Technology Plan

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3