A Game-Theoretic Approach to Solve Competition between Multi-Type Electric Vehicle Charging and Parking Facilities

Author:

Jiang Meihui1,Chen Tao2ORCID,Gao Ciwei2,Ma Rui3,Su Wencong4ORCID,Kavousi-Fard Abdollah5

Affiliation:

1. Suzhou College of Software Engineering, Southeast University, Suzhou 215123, China

2. Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment, Southeast University, Nanjing 210096, China

3. Becom Software Co., Ltd., Beijing 100086, China

4. Department of Electrical Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

5. Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran

Abstract

This paper investigates the competition problem between electric vehicle charging and parking desks for different owners using a non-cooperative Bertrand game. There is growing attention on electric vehicles from both policy makers and the public charging service provider, as well as the electric vehicle owners. The interaction between different entities forms a competition (game), especially between multi-type electric vehicle charging and parking facilities. Most of the existing studies on charging platforms are about the optimization of the charging platform scheduling strategy or the game relationship between charging platforms and EV users, but there is a lack of exploration on the revenue game between charging platforms. In this paper, the competitive interactions between different charging decks are studied and analyzed using a general game-theoretic framework, specifically the Nikaido–Isoda solution. In the pricing competition model, the pricing strategies of all players and physical constraints, such as distribution line capacity, are taken into consideration. Through the case studies, it is clearly indicated that the game played between different electric vehicle charging/parking decks will always converge to a Nash equilibrium point. Both charging service providers and customers could benefit from such an open and fully competitive energy service ecosystem, which enhances the overall social welfare.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

the Open Research Project Programme of the State Key Laboratory of Internet of Things for Smart City

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Coordinated Charging Pricing Approach for Charging Stations with Multi-Agent Deep Reinforcement Learning;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3