Abstract
In the proposed paper, non-equilibrium and equilibrium models of heat and moisture transfer through wet building materials are presented and compared. In the former, the mass transfer between liquid and gaseous moisture results from the difference between the partial pressure of water vapor and its saturation value. In the second model, the equilibrium between both phases is assumed. In the non-equilibrium model, liquid moisture can be in the continuous (funicular) or discontinuous (pendular) form. The transfer of moisture for each proposed model is tightly coupled with the energy transfer, which is assumed to be an equilibrium process. The time step and grid size sensitivity analysis of both numerical models are performed primarily. The verification of the model is based also on the numerical data available in literature. Finally, obtained with considered models, temporal variations of moisture content in three locations in the computational domain are compared. Reasonable conformity of results is reported, and discrepancies related to differences in formulations of models are discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献