Fault Detection and Classification of Shunt Compensated Transmission Line Using Discrete Wavelet Transform and Naive Bayes Classifier

Author:

Aker Elhadi,Othman Mohammad LutfiORCID,Veerasamy VeerapandiyanORCID,Aris Ishak binORCID,Wahab Noor Izzri AbdulORCID,Hizam Hashim

Abstract

This paper presents the methodology to detect and identify the type of fault that occurs in the shunt compensated static synchronous compensator (STATCOM) transmission line using a combination of Discrete Wavelet Transform (DWT) and Naive Bayes (NB) classifiers. To study this, the network model is designed using Matlab/Simulink. Different types of faults, such as Line to Ground (LG), Line to Line (LL), Double Line to Ground (LLG) and the three-phase (LLLG) fault, are applied at disparate zones of the system, with and without STATCOM, considering the effect of varying fault resistance. The three-phase fault current waveforms obtained are decomposed into several levels using Daubechies (db) mother wavelet of db4 to extract the features, such as the standard deviation (SD) and energy values. Then, the extracted features are used to train the classifiers, such as Multi-Layer Perceptron Neural Network (MLP), Bayes and the Naive Bayes (NB) classifier to classify the type of fault that occurs in the system. The results obtained reveal that the proposed NB classifier outperforms in terms of accuracy rate, misclassification rate, kappa statistics, mean absolute error (MAE), root mean square error (RMSE), percentage relative absolute error (% RAE) and percentage root relative square error (% RRSE) than both MLP and the Bayes classifier.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise based algorithm for facts compensated power system disturbances identification and classification;INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATION ENGINEERING SYSTEMS: SPACES-2021;2024

2. Relay algorithm for STATCOM compensated line using differential current ratio;International Journal of Electrical Power & Energy Systems;2024-01

3. Transmission line fault cause identification method based on transient waveform image and MCNN-LSTM;Measurement;2023-10

4. Fault detection through discrete wavelet transform in overhead power transmission lines;Energy Science & Engineering;2023-09-28

5. A new bearing fault diagnosis method based on multi-scale CNN and LSTM;International Conference on Mechatronics and Intelligent Control (ICMIC 2023);2023-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3