Belgian Energy Transition: What Are the Options?

Author:

Limpens Gauthier,Jeanmart Hervé,Maréchal FrancoisORCID

Abstract

Different scenarios at different scales must be studied to help define long term policies to decarbonate our societies. In this work, we analyse the Belgian energy system in 2035 for different carbon emission targets, and accounting for electricity, heat, and mobility. To achieve this objective, we applied the EnergyScope Typical Days open source model, which optimises both the investment and the operation strategy of a complete energy system for a target year. The model includes 96 technologies and 24 resources that have to supply, hourly, the heat, electricity, mobility, and non-energy demands. In line with other research, we identify and quantify, with a merit order, different technological steps of the energy transition. The lack of endogenous resources in Belgium is highlighted and estimated at 275.6 TWh/y. It becomes obvious that additional potentials shall be obtained by importing renewable fuels and/or electricity, deploying geothermal energy, etc. Aside from a reduction of the energy demand, a mix of solutions is shown to be, by far, the most cost effective to reach low carbon emissions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. The ‘ Energiewende ’ in Germany: Background, Development and Future Challenges;Beveridge;Renew. Energy Law Policy Rev.,2013

2. Energy systems transformation

3. Policies to enhance economic feasibility of a sustainable energy transition

4. Le Paysage Énergétique Belge à L’horizon 2050: Perspectives à Politique Inchangéehttps://www.plan.be/publications/publication-1728-fr-le+paysage+energetique+belge+a+l+horizon+2050+perspectives+a+politique+inchangee

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3