A Four-Probe Method Using Different Probe Spacings for Measurement and Exact Reconstruction of Parallel Profiles

Author:

Chen Xi,Sun Changku,Liu Changjie,Fu Luhua

Abstract

To realize the measurement and exact reconstruction of a pair of parallel profiles, a new scanning method using four displacement sensors as probes and different probe spacings has been invented with the advantage of preventing data processing error. The measuring device is placed between the measured objects and moved by a scanning stage to collect measurement data of both measured profiles. Considering many existing methods, the high lateral resolution of the reconstruction result and the rejection of the data processing error cannot always be achieved at the same time. When the measured profiles are in the short wavelength range, data processing errors are often on the same order of magnitude as the height difference of the measured profiles. The new method can eliminate both the straightness error of the measurement reference and the data processing error. The exact reconstruction retaining the high lateral resolution and without data processing error can be realized by rational position arrangement of sensors and corresponding processing method of the measurement data. The new method possesses the following advantages: (i) achievement of the exact reconstruction without data processing error; (ii) high lateral resolution not limited by probe spacing; (iii) concise operation without zero calibration of probes; and (iv) suitability for on-machine measurement. The feasibility and advantages of the new method were demonstrated by theoretical analyses, simulations, and experimental results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3