Experimental Investigation on Contaminated Friction of Hydraulic Spool Valve

Author:

Fan Shuai,Xu Rui,Ji Hong,Yang Shengqing,Yuan Qingyun

Abstract

This paper focuses on the contaminated friction of fit clearance between the spool and valve body to explore the influence principles of clamping stagnation phenomenon. From the perspective of surface morphology and size of particulates in the clearance, designing and manufacturing the valve body, rough spool, conical spool, and standard morphology spool, the test bench was built up and the curves of real-time contaminated friction in the movement of spools were obtained through experiments. The curves show that the contaminated frictions have a feature of pulsation; meanwhile, the stagnation-sensitive size of particulates is between 0.7 and 0.9 times that of clearance. Compared to the ideal morphology spool within the range of sensitive size, the contaminated fiction of rough spool is increased, whereas the lower limit of stagnation-sensitive size range of particulates on conical spool is decreased. The contaminated friction is gradually increased on cis-conical spool but increased first and then decreased on invert cone spool.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3