Currency Crises Prediction Using Deep Neural Decision Trees

Author:

Alaminos DavidORCID,Becerra-Vicario RafaelORCID,Fernández-Gámez Manuel Á.,Cisneros Ruiz Ana J.

Abstract

Currency crises are major events in the international monetary system. They affect the monetary policy of countries and are associated with risks of vulnerability for open economies. Much research has been carried out on the behavior of these events, and models have been developed to predict falls in the value of currencies. However, the limitations of existing models mean further research is required in this area, since the models are still of limited accuracy and have only been developed for emerging countries. This article presents an innovative global model for predicting currency crises. The analysis is geographically differentiated for regions, considering both emerging and developed countries and can accurately estimate future scenarios for currency crises at the global level. It uses a sample of 162 countries making it possible to account for the regional heterogeneity of the warning indicators. The method used was deep neural decision trees (DNDTs), a technique based on decision trees implemented by deep learning neural networks, which was compared with other methodologies widely applied in prediction. Our model has significant potential for the adaptation of macroeconomic policy to the risks derived from falls in the value of currencies, providing tools that help ensure financial stability at the global level.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3