An Ultra-Fast TSP on a CNT Heating Layer for Unsteady Temperature and Heat Flux Measurements in Subsonic Flows

Author:

Bitter MartinORCID,Hilfer MichaelORCID,Schubert Tobias,Klein ChristianORCID,Niehuis ReinhardORCID

Abstract

In this paper, the authors demonstrate the application of a modified Ru(phen)-based temperature-sensitive paint which was originally developed for the evaluation of unsteady aero-thermodynamic phenomena in high Mach number but short duration experiments. In the present work, the modified TSP with a temperature sensitivity of up to −5.6%/K was applied in a low Mach number long-duration test case in a low-pressure environment. For the demonstration of the paint’s performance, a flat plate with a mounted cylinder was set up in the High-Speed Cascade Wind Tunnel (HGK). The test case was designed to generate vortex shedding frequencies up to 4300 Hz which were sampled using a high-speed camera at 40 kHz frame rate to resolve unsteady surface temperature fields for potential heat-transfer estimations. The experiments were carried out at reduced ambient pressure of p∞ = 13.8 kPa for three inflow Mach numbers being Ma∞=[0.3;0.5;0.7]. In order to enable the resolution of very low temperature fluctuations down to the noise floor of 10−5 K with high spatial and temporal resolution, the flat plate model was equipped with a sprayable carbon nanotube (CNT) heating layer. This constellation, together with the thermal sensors incorporated in the model, allowed for the calculation of a quasi-heat-transfer coefficient from the surface temperature fields. Besides the results of the experiments, the paper highlights the properties of the modified TSP as well as the methodology.

Funder

Deutsche Forschungsgemeinschaft

DLR Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference28 articles.

1. Pressure and Temperature Sensitive Paints;Liu,2021

2. Fast Pressure-Sensitive Paint for Flow and Acoustic Diagnostics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3