Abstract
Advanced manufacturing techniques have enabled low-cost, on-chip spectrometers. Little research exists, however, on their performance relative to the state of technology systems. The present study compares the utility of a benchtop FOSS NIRSystems 6500 (FOSS) to a handheld NeoSpectra-Scanner (NEO) to develop models that predict the composition of dried and ground grass, and alfalfa forages. Mixed-species prediction models were developed for several forage constituents, and performance was assessed using an independent dataset. Prediction models developed with spectra from the FOSS instrument had a standard error of prediction (SEP, % DM) of 1.4, 1.8, 3.3, 1.0, 0.42, and 1.3, for neutral detergent fiber (NDF), true in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), and crude protein (CP), respectively. The R2P for these models ranged from 0.90 to 0.97. Models developed with the NEO resulted in an average increase in SEP of 0.14 and an average decrease in R2P of 0.002.
Funder
National Institute of Food and Agriculture
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献