Evaluation of Automated Measurement of Hair Density Using Deep Neural Networks

Author:

Kim Minki,Kang Sunwon,Lee Byoung-Dai

Abstract

Recently, deep learning has been employed in medical image analysis for several clinical imaging methods, such as X-ray, computed tomography, magnetic resonance imaging, and pathological tissue imaging, and excellent performance has been reported. With the development of these methods, deep learning technologies have rapidly evolved in the healthcare industry related to hair loss. Hair density measurement (HDM) is a process used for detecting the severity of hair loss by counting the number of hairs present in the occipital donor region for transplantation. HDM is a typical object detection and classification problem that could benefit from deep learning. This study analyzed the accuracy of HDM by applying deep learning technology for object detection and reports the feasibility of automating HDM. The dataset for training and evaluation comprised 4492 enlarged hair scalp RGB images obtained from male hair-loss patients and the corresponding annotation data that contained the location information of the hair follicles present in the image and follicle-type information according to the number of hairs. EfficientDet, YOLOv4, and DetectoRS were used as object detection algorithms for performance comparison. The experimental results indicated that YOLOv4 had the best performance, with a mean average precision of 58.67.

Funder

Kyonggi University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. International Society of Hair Restoration Surgery: 2020 Practice Census Resultshttps://ishrs.org/wp-content/uploads/2020/05/Report-2020-ISHRS-Practice-Census-05-22-20.pdf

2. Follicular Unit Extraction

3. Hair transplantation: Basic overview

4. An Unsupervised Hair Segmentation and Counting System in Microscopy Images

5. Dataset Enhancement in Hair Follicle Detection: ESENSEI Challenge

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3