Approach for 3D Cultural Relic Classification Based on a Low-Dimensional Descriptor and Unsupervised Learning

Author:

Gao Hongjuan,Geng Guohua,Zeng Sheng

Abstract

Computer-aided classification serves as the basis of virtual cultural relic management and display. The majority of the existing cultural relic classification methods require labelling of the samples of the dataset; however, in practical applications, there is often a lack of category labels of samples or an uneven distribution of samples of different categories. To solve this problem, we propose a 3D cultural relic classification method based on a low dimensional descriptor and unsupervised learning. First, the scale-invariant heat kernel signature (Si-HKS) was computed. The heat kernel signature denotes the heat flow of any two vertices across a 3D shape and the heat diffusion propagation is governed by the heat equation. Secondly, the Bag-of-Words (BoW) mechanism was utilized to transform the Si-HKS descriptor into a low-dimensional feature tensor, named a SiHKS-BoW descriptor that is related to entropy. Finally, we applied an unsupervised learning algorithm, called MKDSIF-FCM, to conduct the classification task. A dataset consisting of 3D models from 41 Tang tri-color Hu terracotta Eures was utilized to validate the effectiveness of the proposed method. A series of experiments demonstrated that the SiHKS-BoW descriptor along with the MKDSIF-FCM algorithm showed the best classification accuracy, up to 99.41%, which is a solution for an actual case with the absence of category labels and an uneven distribution of different categories of data. The present work promotes the application of virtual reality in digital projects and enriches the content of digital archaeology.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference50 articles.

1. The dig of aesthetic uniqueness in the Tang dynasty by means of Tri-colored glazed pottery of the Tang dynasty;Fan;China Ceram.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3