Abstract
This study investigates the impedance curve of magnetoelectric (ME) composites (i.e., Fe80Si9B11/Pb(Zr0.3Ti0.7)O3 laminate) and extracts the modified Butterworth–Van Dyke (MBVD) model’s parameters at various direct current (DC) bias magnetic fields Hdc. It is interesting to find that both the magnetoimpedance and MBVD model’s parameters of ME composite depend on Hdc, which is primarily attributed to the dependence of FeSiB’s and neighboring PZT’s material properties on Hdc. On one hand, the delta E effect and magnetostriction of FeSiB result in the change in PZT’s dielectric permittivity, leading to the variation in impedance with Hdc. On the other hand, the magnetostriction and mechanical energy dissipation of FeSiB as a function of Hdc result in the field dependences of the MBVD model’s parameters and mechanical quality factor. Furthermore, the influences of piezoelectric and electrode materials properties on the MBVD model’s parameters are analyzed. This study plays a guiding role for ME sensor design and its application.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献