Effect of Initial Microstructure on the Toughness of Coarse-Grained Heat-Affected Zone in a Microalloyed Steel

Author:

Shi Minghao,Di Man,Zhang Jian,Kannan RangasayeeORCID,Li JingORCID,Yuan Xiaoguang,Li LeijunORCID

Abstract

Toughness of the coarse-grained-heat-affected-zone (CGHAZ) strongly depends on the prior austenite grain size. The prior austenite grain size is affected not only by chemical composition, thermal cycle, and dissolution of second-phase particles, but also by the initial microstructure. The effect of base metal microstructure (ferrite/pearlite obtained by air cooling and martensite obtained by water-quenching) on Charpy impact toughness of the CGHAZ has been investigated for different heat inputs for high-heat input welding of a microalloyed steel. A welding thermal cycle with a heat input of 100 kJ/cm and 400 kJ/cm were simulated on the MMS-300 system. Despite a similar microstructure in the CGHAZ of both the base metals, the average Charpy impact energy for the air-cooled base metal was found to be higher than the water-quenched base metal. Through thermo-kinetic simulations, it was found that a higher enrichment of Mn/C at the ferrite/austenite transformation interface of the CGHAZ of water-quenched base metal resulted in stabilizing austenite at a lower A1 temperature, which resulted in a coarser austenite grain size and eventually lowering the toughness of the CGHAZ.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3