New Evidence to Support Zephyria Tholus as a Composite Volcano on Mars

Author:

Wang LeORCID,Zhao JiannanORCID,Huang JunORCID,Xiao Long

Abstract

Zephyria Tholus has been proposed to be a composite volcano, however, detailed geomorphological study was not carried out due to limited high-resolution remote sensing data. Here we use MOLA, THEMIS, CTX and HiRISE data to conduct topographical and geomorphological analysis of Zephyria Tholus. We identify extensive valleys and troughs on the flank, which are sector collapse or glacio-fluvial in origin. The valleys and troughs indicate coexistence of different erosion resistance materials, along with the observed solid lava outcrops. There are also layered materials identified on the wall of the largest valley. In addition, perched craters are identified on the top depression and flanks of Zephyria Tholus, indicating the presence of ice-rich layer. We conducted crater size-frequency distribution of the caldera and found the absolute model age is 3.74 (+0.03, −0.04) Ga. The geomorphology evidence and chronology result support the composite volcano nature of Zephyria Tholus, and indicate the magma volatile content in the Aeolis region in Noachian is more than 0.15 wt% if the atmosphere paleo-pressure was similar to present Mars.

Funder

Strategic Priority Research Program of the Chinese Acad-230 emy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3