Determination of Tropospheric Parameters from ERA Surface Data for Space Geodetic Techniques

Author:

Li Wei,He Yujin

Abstract

This study investigates methods of deriving meteorological parameters needed in space geodetic applications, from the surface data of the numerical weather model (NWM). It is more efficient than pressure level data in terms of storage and transmission. Based on more realistic assumptions for the structure of the troposphere, formulas for accurate vertical reduction of pressure (P) and precipitable water vapor (PWV) are deduced, and they are applied with the gridded lapse rate data provided by the GPT2w model. The new method achieves better accuracy especially when a large height difference between the grid point and station exists. Validation with global radiosonde observations shows that the RMS errors of P, temperature (T), and water vapor pressure (e) derived from 2.5° × 2.5° ERA surface data are 1.16 hPa, 1.95 K, and 1.76 hPa respectively; zenith tropospheric delays (ZTDs) calculated from derived P, T, and e values have a mean RMS error of 3.26 cm, comparable to that obtained from in situ measurements; adding PWV will increase ZTD estimation accuracy to 1.52 cm, comparable to that obtained from NWM pressure level data. Validations with Global Navigation Satellite System estimated ZTDs from global and regional station networks display similar results on the globe, as well as features for localized regions. Using higher spatial resolution NWM seems to have little effect on the accuracy of ZTDs calculated from P, T, and e, while it apparently improves the accuracy of ZTDs calculated from P, T, e, and PWV.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3