Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China

Author:

Liu JinpingORCID,Ren Yanqun,Tao Hui,Shalamzari Masoud Jafari

Abstract

Global warming and rapid socioeconomic development increased the risk of regional and global disasters. Particularly in China, annual heatwaves (HWs) caused many fatalities and substantial property damage, with an increasing trend. Therefore, it is of great scientific value and practical importance to analyze the spatiotemporal changes of HW in China for the sustainable development of regional socioeconomic and disaster risk management. In this study, based on gridded maximum temperature product and specific humidity dataset, an HW evaluation algorithm, considering the impact of humidity on the human body and the characteristics of HW in China, was employed to generate daily HW state at light, moderate, and severe levels for the period 1979–2018. Consequently, the regional differences at three HW levels were revealed, and the changing trend of HW onset, termination, and duration in each subregion was analyzed. The results show that in the three levels, the frequency and duration of HW in China had a significant increasing trend, generally characterized by the advancement of HW onset and the postponement of HW termination. The HW influence at light, moderate and severe levels decreased gradually, with the light level occurring the earliest and terminating the latest. Among the seven subregions, the largest HW frequency happened to be mainly in XJ (Xinjiang), SC (Southern China), and NC (Northern China), while the variations of HW onset and termination had noticeable regional differences at the three levels. The findings presented in this study can provide the essential scientific and technological support for national and regional disaster prevention mitigation and adaptation to extreme climate events.

Funder

National Key Research and Development Program of China

CAS “Light of West China” Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3