Soil Salinization Level Monitoring and Classifying by Mixed Chaotic Systems

Author:

Tian AnhongORCID,Fu Chengbiao,Yau Her-Terng,Su Xiao-YiORCID,Xiong Heigang

Abstract

Soil salinization process is a complex non-linear dynamic evolution. To classify a system with this type of non-linear characteristic, this study proposed a mixed master/slave chaotic system based on Chua’s circuit and a fractional-order Chen-Lee chaotic system to classify soil salinization level. The subject is the soil in Xinjiang with different levels of human interference. A fractional-order Chen-Lee chaotic system was constructed, and the spectral signal processed by the Chua’s non-linear circuit was substituted into the master/slave chaotic system. The chaotic dynamic errors with different fractional orders were calculated. The comparative analysis showed that 0.1-order has the largest chaotic dynamic error change, which produced two distinct and divergent results. Thus, this study converted the chaotic dynamic errors of fractional 0.1-order into chaotic attractors to build an extension matter-element model. Finally, we compared the soil salt contents (SSC) from the laboratory chemical analysis with the results of the extension theory classification. The comparison showed that the combination of fractional order mixed master/slave chaotic system and extension theory has high classification accuracy for soil salinization level. The results of this system match the result of the chemical analysis. The classification accuracy of the calibration set data was 100%, and the classification accuracy of the validation set data was 90%. This method is the first use of the mixed master/slave chaotic system in this field and can satisfy certain soil salinization monitoring needs as well as promote the application of the chaotic system in soil salinization monitoring.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3