Enhanced Anti-Corrosion Performance of Co-Cr-Mo Alloy in Molten Al by Prior Oxidation Treatment

Author:

Shang Rongrong1,Yang Biaobiao123,Li Yunping1ORCID

Affiliation:

1. State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410017, China

2. IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain

3. Department of Materials Science, Escuela Técnica Superior de Ingenieros de Caminos, Polytechnic University of Madrid, 28040 Madrid, Spain

Abstract

Co-based alloys are promising alternatives to replace the currently used tool steels in aluminum die-casting molds for producing sophisticated products. Although the reaction is significantly less severe compared to that of tool steels, bare Co-29Cr-6Mo (CCM) alloy is still gradually corroded under molten Al, leading to the local failure of the alloy due to the formation of intermetallic compounds between the matrix and molten Al. This study indicated that prior oxidation treatment at 750 °C on CCM alloy is beneficial in enhancing the corrosion resistance of the alloy to molten Al. The is more pronounced in the alloy after a longer oxidation treatment. However, after oxidation for longer than 24 h, the protectiveness of the film cannot be enhanced anymore. In addition, even after the full failure of the oxide film, the thickness loss rate of a sample with prior oxidation treatment is much lower than that of a bare sample. This can be attributed to the fact that network-aligned oxide particles of the cone structure boundary inhibit both the outwards movements of alloying elements and the dissolution of the intermetallic layer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3