Effective Macroscopic Thermomechanical Characterization of Multilayer Circuit Laminates for Advanced Electronic Packaging

Author:

Cheng Hsien-Chie1,Jhu Wen-You12

Affiliation:

1. Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 407, Taiwan

2. Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung 407, Taiwan

Abstract

Laminate substrates in advanced IC packages serve as not only the principal heat dissipation pathway but also the critical component governing the thermomechanical performance of advanced packaging technologies. A solid and profound grasp of their thermomechanical properties is of crucial importance to better understand IC packages’ thermomechanical behavior. This study attempts to introduce a subregion homogenization modeling framework for effectively and efficiently modeling and characterizing the equivalent thermomechanical behavior of large-scale and high-density laminate substrates comprising the non-uniform distribution and non-unidirectional orientation of tiny metal traces. This framework incorporates subregion modeling, trace mapping and modeling, and finite element analysis (FEA)-based effective modeling. In addition, the laminates are macroscopically described as elastic orthotropic or elastic anisotropic material. This framework is first validated with simple uniaxial tensile and thermomechanical test simulations, and the calculation results associated with these two effective material models are compared with each other, as well as with those of two existing mixture models, and direct the detailed FEA. This framework is further tested on the prediction of the process-induced warpage of a flip chip chip-scale package, and the results are compared against the measurement data and the results of the whole-domain modeling-based effective approach and two existing mixture models.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3