Geopolymers: Advanced Materials in Medicine, Energy, Anticorrosion and Environmental Protection

Author:

Kudłacik-Kramarczyk Sonia1,Drabczyk Anna1,Figiela Beata1ORCID,Korniejenko Kinga1ORCID

Affiliation:

1. Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland

Abstract

The initial predictions of the importance of geopolymers primarily assumed use mainly in the construction sector. However, as research progresses, it is becoming clear that these versatile materials demonstrate the ability to greatly exceed their original applications, as characterized in detail in this review article. To the best of our knowledge, there is no literature review concerning geopolymer materials that compiles the diverse applications of these versatile materials. This paper focuses on geopolymer applications beyond the construction industry. The surprising application potential of geopolymers in medicine has become a topic of particular interest. Therefore, considerable attention in this paper is devoted to characterizing the utility of these materials in tissue engineering, dentistry and drug delivery systems. Geopolymers not only have exceptional heat resistance and compressive strength, making them durable and resistant to manipulation (over five times less drug released from the geopolymer carrier compared to the commercial formulation), but also provide a robust solution for extended-release drug delivery systems, especially in opioid formulations. Their chemical stability, porous structure and ability to maintain structure after repeated regeneration processes speak to their potential in water treatment. Geopolymers, which excel in the energy industry as refractory materials due to their resistance to high temperatures and refractory properties, also present potential in thermal insulation and energy storage. It was demonstrated that geopolymer-based systems may even be 35% cheaper than conventional ones and show 70% lower thermal conductivity. In terms of protection against microorganisms, the possibility of modifying geopolymers with antimicrobial additives shows their adaptability, maintaining their effectiveness even under high-temperature conditions. Research into their use as anticorrosion materials is targeting corrosion-resistant coatings, with geopolymers containing graphene oxide showing particularly promising results. The multitude of potential applications for geopolymers in a variety of fields reflects their enormous potential. As research progresses, the scope of their possibilities continues to expand, offering innovative solutions to pressing global challenges.

Funder

Polish National Centre for Research and Development

Publisher

MDPI AG

Subject

General Materials Science

Reference124 articles.

1. State of the art of geopolymers: A review;Castillo;e-Polymers,2022

2. Geopolymer, green alkali activated cementitious material: Synthesis, applications, and challenges;Wu;Constr. Build. Mater.,2019

3. Recent progress in environmentally friendly geopolymers: A review;Shehata;Sci. Total Environ.,2021

4. Geopolymers: Ceramic-Like Inorganic Polymers;Davidovits;J. Ceram. Sci. Technol.,2017

5. Geopolymerisation: A review and prospects for the minerals industry;Komnitsas;Miner. Eng.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3