Affiliation:
1. Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China
2. College of Life Science, Northeast Forestry University, Harbin 150040, China
3. Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China
4. Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
Abstract
MicroRNAs (miRNAs) belong to non-coding small RNAs which have been shown to take a regulatory function at the posttranscriptional level in plant growth development and response to abiotic stress. Hemerocallis fulva is an herbaceous perennial plant with fleshy roots, wide distribution, and strong adaptability. However, salt stress is one of the most serious abiotic stresses to limit the growth and production of Hemerocallis fulva. To identify the miRNAs and their targets involved in the salt stress resistance, the salt-tolerant H. fulva with and without NaCl treatment were used as materials, and the expression differences of miRNAs–mRNAs related to salt-tolerance were explored and the cleavage sites between miRNAs and targets were also identified by using degradome sequencing technology. In this study, twenty and three significantly differential expression miRNAs (p-value < 0.05) were identified in the roots and leaves of H. fulva separately. Additionally, 12,691 and 1538 differentially expressed genes (DEGs) were also obtained, respectively, in roots and leaves. Moreover, 222 target genes of 61 family miRNAs were validated by degradome sequencing. Among the DE miRNAs, 29 pairs of miRNA targets displayed negatively correlated expression profiles. The qRT-PCR results also showed that the trends of miRNA and DEG expression were consistent with those of RNA-seq. A gene ontology (GO) enrichment analysis of these targets revealed that the calcium ion pathway, oxidative defense response, microtubule cytoskeleton organization, and DNA binding transcription factor responded to NaCl stress. Five miRNAs, miR156, miR160, miR393, miR166, and miR396, and several hub genes, squamosa promoter-binding-like protein (SPL), auxin response factor 12 (ARF), transport inhibitor response 1-like protein (TIR1), calmodulin-like proteins (CML), and growth-regulating factor 4 (GRF4), might play central roles in the regulation of NaCl-responsive genes. These results indicate that non-coding small RNAs and their target genes that are related to phytohormone signaling, Ca2+ signaling, and oxidative defense signaling pathways are involved in H. fulva’s response to NaCl stress.
Funder
Open Project of Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Heilongjiang Province of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献