Affiliation:
1. Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
2. Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hannover, Germany
Abstract
Mammals respond to amino acid (AA) deficiency by initiating an AA response pathway (AAR) that involves the activation of general control nonderepressible 2 (GCN2), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and activation of transcription factor 4 (ATF4). In this study, the effects of protein (N) and/or phosphorus (P) restriction on the GCN2/eIF2α/ATF4 pathway in the liver and the induction of fibroblast growth factor 21 (FGF21) in young goats were investigated. An N-reduced diet resulted in a decrease in circulating essential AA (EAA) and an increase in non-essential AA (NEAA), as well as an increase in hepatic mRNA expression of GCN2 and ATF4 and protein expression of GCN2. Dietary N restriction robustly increased both hepatic FGF21 mRNA expression and circulating FGF21 levels. Accordingly, numerous significant correlations demonstrated the effects of the AA profile on the AAR pathway and confirmed an association. Furthermore, activation of the AAR pathway depended on the sufficient availability of P. When dietary P was restricted, the GCN2/eIF2α/ATF4 pathway was not initiated, and no increase in FGF21 was observed. These results illustrate how the AAR pathway responds to N- and/or P-reduced diets in ruminants, thus demonstrating the complexity of dietary component changes.
Funder
Deutsche Forschungsgemeinschaft
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献