Disruption of Irisin Dimerization by FDA-Approved Drugs: A Computational Repurposing Approach for the Potential Treatment of Lipodystrophy Syndromes

Author:

Flori Lorenzo1ORCID,Brogi Simone12ORCID,Sirous Hajar2ORCID,Calderone Vincenzo1

Affiliation:

1. Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy

2. Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

Abstract

In this paper, we present the development of a computer-based repurposing approach to identify FDA-approved drugs that are potentially able to interfere with irisin dimerization. It has been established that altered levels of irisin dimers are a pure hallmark of lipodystrophy (LD) syndromes. Accordingly, the identification of compounds capable of slowing down or precluding the irisin dimers’ formation could represent a valuable therapeutic strategy in LD. Combining several computational techniques, we identified five FDA-approved drugs with satisfactory computational scores (iohexol, XP score = −7.70 kcal/mol, SP score = −5.5 kcal/mol, ΔGbind = −61.47 kcal/mol, ΔGbind (average) = −60.71 kcal/mol; paromomycin, XP score = −7.23 kcal/mol, SP score = −6.18 kcal/mol, ΔGbind = −50.14 kcal/mol, ΔGbind (average) = −49.13 kcal/mol; zoledronate, XP score = −6.33 kcal/mol, SP score = −5.53 kcal/mol, ΔGbind = −32.38 kcal/mol, ΔGbind (average) = −29.42 kcal/mol; setmelanotide, XP score = −6.10 kcal/mol, SP score = −7.24 kcal/mol, ΔGbind = −56.87 kcal/mol, ΔGbind (average) = −62.41 kcal/mol; and theophylline, XP score = −5.17 kcal/mol, SP score = −5.55 kcal/mol, ΔGbind = −33.25 kcal/mol, ΔGbind (average) = −35.29 kcal/mol) that are potentially able to disrupt the dimerization of irisin. For this reason, they deserve further investigation to characterize them as irisin disruptors. Remarkably, the identification of drugs targeting this process can offer novel therapeutic opportunities for the treatment of LD. Furthermore, the identified drugs could provide a starting point for a repositioning approach, synthesizing novel analogs with improved efficacy and selectivity against the irisin dimerization process.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3