Distinct Transcriptional Responses of Skeletal Muscle to Short-Term Cold Exposure in Tibetan Pigs and Bama Pigs

Author:

Yang Chunhuai12,Cao Chunwei3,Liu Jiali1,Zhao Ying1,Pan Jianfei1,Tao Cong1,Wang Yanfang12

Affiliation:

1. State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China

3. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China

Abstract

Piglets are susceptible to cold, and piglet death caused by cold stress leads to economic losses in the pig industry in cold areas. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, but the related mechanism in pigs is unclear. In this study, cold-tolerant Tibetan pigs and cold-sensitive Bama pigs were subjected to either a cold environment (4 °C) or a room temperature environment (25 °C) for 3 days. The biceps femoris (BF) and longissimus dorsi muscle (LDM) were collected for phenotypic analysis, and the BF was used for genome-wide transcriptional profiling. Our results showed that Tibetan pigs had a higher body temperature than Bama pigs upon cold stimulation. RNA-seq data indicated a stronger transcriptional response in the skeletal muscle of Tibetan pigs upon cold stimulation, as more differentially expressed genes (DEGs) were identified with the same criteria (p < 0.05 and fold change > 2). In addition, distinct pathway signaling patterns in skeletal muscle upon cold exposure were found between the breeds of pigs. Mitochondrial beta-oxidation-related genes and pathways were significantly upregulated in Tibetan pigs, indicating that Tibetan pigs may use fatty acids as the primary fuel source to protect against cold. However, the significant upregulation of inflammatory response- and glycolysis-related genes and pathways in the skeletal muscle of Bama pigs suggested that these pigs may use glucose as the primary fuel source in cold environments. Together, our study revealed the distinct transcriptional responses of skeletal muscle to cold stimulation in Tibetan pigs and Bama pigs and provided novel insights for future investigation of the cold adaptation mechanism in pigs.

Funder

Laboratory of Lingnan Modern Agriculture Project

National Key R & D Program of China

National Natural Science Foundation for Distinguished Young Scholars

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3