Affiliation:
1. Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
2. Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
Abstract
The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme for the process of ABA synthesis that plays key roles in a variety of biological processes. In the current investigation, genome-wide identification and comprehensive analysis of the NCED gene family in ‘Kuerle Xiangli’ (Pyrus sinkiangensis Yu) were conducted using the pear genomic sequence. In total, nineteen members of PbNCED genes were identified from the whole genome of pear, which are not evenly distributed over the scaffolds, and most of which were focussed in the chloroplasts. Sequence analysis of promoters showed many cis-regulatory elements, which presumably responded to phytohormones such as abscisic acid, auxin, etc. Synteny block indicated that the PbNCED genes have experienced strong purifying selection. Multiple sequence alignment demonstrated that these members are highly similar and conserved. In addition, we found that PbNCED genes were differentially expressed in various tissues, and three PbNCED genes (PbNCED1, PbNCED2, and PbNCED13) were differentially expressed in response to exogenous Gibberellin (GA3) and Paclobutrazol (PP333). PbNCED1 and PbNCED13 positively promote ABA synthesis in sepals after GA3 and PP333 treatment, whereas PbNCED2 positively regulated ABA synthesis in ovaries after GA3 treatment, and PbNCED13 positively regulated ABA synthesis in the ovaries after PP333 treatment. This study was the first genome-wide report of the pear NCED gene family, which could improve our understanding of pear NCED proteins and provide a solid foundation for future cloning and functional analyses of this gene family. Meanwhile, our results also give a better understanding of the important genes and regulation pathways related to calyx abscission in ‘Kuerle Xiangli’.
Funder
the National Natural Science Foundation of China
the Specialized Research Fund for the Doctoral Program of Higher Education
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献