β-Cyclodextrin Polymer-Based Fluorescence Enhancement Strategy via Host–Guest Interaction for Sensitive Assay of SARS-CoV-2

Author:

Gao Shanshan12,Yang Gege12,Zhang Xiaohui1,Shi Rui3,Chen Rongrong3,Zhang Xin1,Peng Yuancheng3,Yang Hua12,Lu Ying1,Song Chunxia12ORCID

Affiliation:

1. Department of Applied Chemistry, School of Science, Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China

2. State Key Laboratory of Tea Plant Biology and Utilization, Hefei 230036, China

3. School of Life Science, Anhui Agricultural University, Hefei 230036, China

Abstract

Nucleocapsid protein (N protein) is an appropriate target for early determination of viral antigen-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have found that β-cyclodextrin polymer (β-CDP) has shown a significant fluorescence enhancement effect for fluorophore pyrene via host–guest interaction. Herein, we developed a sensitive and selective N protein-sensing method that combined the host–guest interaction fluorescence enhancement strategy with high recognition of aptamer. The DNA aptamer of N protein modified with pyrene at its 3′ terminal was designed as the sensing probe. The added exonuclease I (Exo I) could digest the probe, and the obtained free pyrene as a guest could easily enter into the hydrophobic cavity of host β-CDP, thus inducing outstanding luminescent enhancement. While in the presence of N protein, the probe could combine with it to form a complex owing to the high affinity between the aptamer and the target, which prevented the digestion of Exo I. The steric hindrance of the complex prevented pyrene from entering the cavity of β-CDP, resulting in a tiny fluorescence change. N protein has been selectively analyzed with a low detection limit (11.27 nM) through the detection of the fluorescence intensity. Moreover, the sensing of spiked N protein from human serum and throat swabs samples of three volunteers has been achieved. These results indicated that our proposed method has broad application prospects for early diagnosis of coronavirus disease 2019.

Funder

NSFC of China

the Natural Science Foundation of Education Committee of Anhui Province

the Open Fund of State Key Laboratory of Tea Plant Biology and Utilization

Open Foundation of Key Laboratory of Agricultural Sensors, Ministry of Agriculture, Anhui Agricultural University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3