Calcification of Various Bioprosthetic Materials in Rats: Is It Really Different?

Author:

Zhuravleva Irina Y.1,Karpova Elena V.2ORCID,Dokuchaeva Anna A.1,Titov Anatoly T.3,Timchenko Tatiana P.1,Vasilieva Maria B.1

Affiliation:

1. E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., 630055 Novosibirsk, Russia

2. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia

3. V. Sobolev Institute of Geology and Mineralogy SB RAS, 3 Academician Koptyug Avenue, 630090 Novosibirsk, Russia

Abstract

The causes of heart valve bioprosthetic calcification are still not clear. In this paper, we compared the calcification in the porcine aorta (Ao) and the bovine jugular vein (Ve) walls, as well as the bovine pericardium (Pe). Biomaterials were crosslinked with glutaraldehyde (GA) and diepoxide (DE), after which they were implanted subcutaneously in young rats for 10, 20, and 30 days. Collagen, elastin, and fibrillin were visualized in non-implanted samples. Atomic absorption spectroscopy, histological methods, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to study the dynamics of calcification. By the 30th day, calcium accumulated most intensively in the collagen fibers of the GA-Pe. In elastin-rich materials, calcium deposits were associated with elastin fibers and localized differences in the walls of Ao and Ve. The DE-Pe did not calcify at all for 30 days. Alkaline phosphatase does not affect calcification since it was not found in the implant tissue. Fibrillin surrounds elastin fibers in the Ao and Ve, but its involvement in calcification is questionable. In the subcutaneous space of young rats, which are used to model the implants’ calcification, the content of phosphorus was five times higher than in aging animals. We hypothesize that the centers of calcium phosphate nucleation are the positively charged nitrogen of the pyridinium rings, which is the main one in fresh elastin and appears in collagen as a result of GA preservation. Nucleation can be significantly accelerated at high concentrations of phosphorus in biological fluids. The hypothesis needs further experimental confirmation.

Funder

Ministry of Health of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3