An Efficient 2D Protocol for Differentiation of iPSCs into Mature Postmitotic Dopaminergic Neurons: Application for Modeling Parkinson’s Disease

Author:

Lebedeva Olga S.12ORCID,Sharova Elena I.1ORCID,Grekhnev Dmitriy A.3ORCID,Skorodumova Liubov O.1ORCID,Kopylova Irina V.1,Vassina Ekaterina M.4,Oshkolova Arina3,Novikova Iuliia V.3,Krisanova Alena V.3,Olekhnovich Evgenii I.12,Vigont Vladimir A.3ORCID,Kaznacheyeva Elena V.3ORCID,Bogomazova Alexandra N.12ORCID,Lagarkova Maria A.12

Affiliation:

1. Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia

2. Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, St. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia

3. Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 St. Petersburg, Russia

4. Vavilov Institute of General Genetics, GSP-1, Gubkina St., 3, 119991 Moscow, Russia

Abstract

About 15% of patients with parkinsonism have a hereditary form of Parkinson’s disease (PD). Studies on the early stages of PD pathogenesis are challenging due to the lack of relevant models. The most promising ones are models based on dopaminergic neurons (DAns) differentiated from induced pluripotent stem cells (iPSCs) of patients with hereditary forms of PD. This work describes a highly efficient 2D protocol for obtaining DAns from iPSCs. The protocol is rather simple, comparable in efficiency with previously published protocols, and does not require viral vectors. The resulting neurons have a similar transcriptome profile to previously published data for neurons, and have a high level of maturity marker expression. The proportion of sensitive (SOX6+) DAns in the population calculated from the level of gene expression is higher than resistant (CALB+) DAns. Electrophysiological studies of the DAns confirmed their voltage sensitivity and showed that a mutation in the PARK8 gene is associated with enhanced store-operated calcium entry. The study of high-purity DAns differentiated from the iPSCs of patients with hereditary PD using this differentiation protocol will allow for investigators to combine various research methods, from patch clamp to omics technologies, and maximize information about cell function in normal and pathological conditions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference94 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3