ZnO Nanorods Create a Hypoxic State with Induction of HIF-1 and EPAS1, Autophagy, and Mitophagy in Cancer and Non-Cancer Cells

Author:

Aventaggiato Michele1ORCID,Preziosi Adele2,Cheraghi Bidsorkhi Hossein34ORCID,Schifano Emily2,Vespa Simone5ORCID,Mardente Stefania1ORCID,Zicari Alessandra1,Uccelletti Daniela24ORCID,Mancini Patrizia1ORCID,Lotti Lavinia Vittoria1ORCID,Sarto Maria Sabrina34ORCID,Tafani Marco1ORCID

Affiliation:

1. Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy

2. Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, P.le A. Moro,5, 00185 Rome, Italy

3. Department of Aerospace, Electrical and Energy Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy

4. Research Center for Nanotechnology Applied to Engineering, Sapienza University, Via Eudossiana 18, 00184 Rome, Italy

5. Center for Advanced Studies and Technology, University “G. D’Annunzio” of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy

Abstract

Nanomaterials are gaining increasing attention as innovative materials in medicine. Among nanomaterials, zinc oxide (ZnO) nanostructures are particularly appealing because of their opto-electrical, antimicrobial, and photochemical properties. Although ZnO is recognized as a safe material and the Zn ion (Zn2+) concentration is strictly regulated at a cellular and systemic level, different studies have demonstrated cellular toxicity of ZnO nanoparticles (ZnO-NPs) and ZnO nanorods (ZnO-NRs). Recently, ZnO-NP toxicity has been shown to depend on the intracellular accumulation of ROS, activation of autophagy and mitophagy, as well as stabilization and accumulation of hypoxia-inducible factor-1α (HIF-1α) protein. However, if the same pathway is also activated by ZnO-NRs and how non-cancer cells respond to ZnO-NR treatment, are still unknown. To answer to these questions, we treated epithelial HaCaT and breast cancer MCF-7 cells with different ZnO-NR concentrations. Our results showed that ZnO-NR treatments increased cell death through ROS accumulation, HIF-1α and endothelial PAS domain protein 1 (EPAS1) activation, and induction of autophagy and mitophagy in both cell lines. These results, while on one side, confirmed that ZnO-NRs can be used to reduce cancer growth, on the other side, raised some concerns on the activation of a hypoxic response in normal cells that, in the long run, could induce cellular transformation.

Funder

Sapienza University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3