Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications

Author:

Natarajan Thillai Sivakumar,Mozhiarasi Velusamy,Tayade Rajesh J.ORCID

Abstract

Titanium dioxide (TiO2) is one of the stable and potential metal oxide semiconductor nanomaterials with flexible properties which allows them to be used in a variety of applications (i.e., environmental remediation, energy storage and production, and also as a pigment in personal care products, etc.). However, its low surface area, poor adsorption capacity and high bandgap energy (~3.2 eV) prevents its full potency. Especially, TiO2 with high bandgap (~3.2 eV) reduces its visible light absorption capacity and catalytic efficiency. Various modification processes (i.e., metal and non-metal doping, composite materials (mixed metal oxide, high surface area adsorbents), and dye sensitization etc.) have been accomplished for stimulating the characteristics of TiO2 and the associated catalytic efficiency. Among the modifications, the non-metal doping process in TiO2, specifically nitrogen doping, is one of the efficient dopants for enhancing the photocatalytic efficiency of TiO2 in the presence of visible light irradiation. However, the morphology of TiO2, structural changes in TiO2 during N-doping, properties (e.g., morphology and electronic) of N-doped TiO2 and also reaction operational parameters (e.g., doping concentration) hold a greater impact for enhancing the photocatalytic properties of TiO2 either positively or negatively. Furthermore, the synthesis methodologies have a major influence on the synthesis of stable N-TiO2 with pronounced photocatalytic efficiencies. Nevertheless, the methodologies for highly stable N-TiO2 synthesis, properties evaluation and their correlation with photocatalytic efficiencies are still not appropriately stabilized to accomplish the commercial utilization of N-TiO2. Therefore, this review article focuses on the synopsis of various synthesis methodologies and either their efficiencies or inefficiencies, the mechanism involved in the doping processes, changes in the structural, electronic and morphological properties observed due to the N-doping along with the photocatalytic capacity. Furthermore, the opportunities, challenges and future requirements linked to the development of durable N-doped TiO2-based semiconductor nanomaterials for efficient catalytic performance is also represented.

Funder

Central Leather Research Institute

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3