Abstract
Under solvothermal conditions, the Zn(II) complexes formed from salophen-based ligands with N and O donor atoms are reported. These Zn(II) complexes were initially confirmed through elemental analysis and supported by mass spectral data. The purity of the ligands and Zn(II) complexes was confirmed by using NMR spectral studies. The functional group complexation was established by FT-IR analysis. Additional supportive information about the complexes is also reported through molar conductance and thermal studies. The bandgap energies of the ligands and Zn(II) complexes are estimated with UV-visible DRS studies. The rate of recombination of hole–electron pairs is directly related to photocatalytic activity, which is confirmed by using emission spectral analysis. The surface metaphors for ligands and complexes are obtained from FESEM analysis. These new sequences of Zn(II) complexes were used for the photooxidation of 2,2′-(ethyne-1,2-diyl)dianiline and its derivatives. Mechanistic studies on the fast degradation of dyes were supported in the presence of several scavengers. The rapid photooxidation process in the presence of [Zn(CPAMN)] has been demonstrated, and a highly efficient photocatalyst for the photooxidation of 2,2′-(ethyne-1,2-diyl) dianiline has been proposed. Furthermore, the experimental findings are supported by the DFT studies.
Funder
Science and Engineering Research Board
Council for Scientific and Industrial Research
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献